
Obligatorisk uppgift 3 - 1DL028

Alhassan Jawad

May 3, 2024

Information

Name: Alhassan Jawad
Contact:

• Alhassan.Jawad.9989@student.uu.se

• Alhassan.Jawad@it.uu.se

1 Introduction

In this report, I will explain and summarize how I solved the 3rd Assignment
of the the course Object Oriented Programming with Java. I will even explain
how to use the package LekMedGeometri and how to add figures to the package
and thus show it on the GUI.

1

2 Organisation & Structure of the Code

Using event-driven programming, standard libraries, and object-oriented pro-
gramming concepts, the program shows how to create a well-structured and ex-
ecuted solution. The intended functionality is achieved and the design choices
are driven by sound reasoning.

The program is organized into three main classes:

• Main Class (RunMe.java)

– Responsible for the program flow

– Creates instances of Rectangle, Circle, and Triangle classes

– Creates the frame, adds the objects to it and makes it visible

• Shape Classes (Rectangle.java, Circle.java, Triangle.java)

– Represents the specific shapes with specific properties and behaviours

– Makes usage of JPanel to enable graphic drawings

– Implements MouseListener & MouseMotionListener to handle dif-
ferent mouse movement events

2.1 Most important Methods of each class

Although the given shape code files (Rectangle.java, Circle.java, Triangle.java)
uses distinct classes for each shape, the most crucial functions are the same for
all of these types:

• Get methods for positions and sizes: These methods enable the retrieval
of the width and height (for Rectangle and Triangle) or radius of the form
(for Circle), in addition to its X and Y coordinates.

• Mouse event handling: The methods make use of features connected to
the MouseListener and MouseMotionListener interfaces.

The primary functions shared by all of these shape classes are essentially getting
access to the form’s position and size as well as reacting to mouse events in
response to user input/action.

2

3 Initial Approach

My initial approach to solving this problem involved additional files beyond the
ones included in the final submission. Among them was DrawingPanel.java that
calls to the various shape classes, which was meant to handle creating the entire
panel. In an attempt to streamline the process of coding the solution, I started
by concentrating on applying one shape at a time. The rectangle was initially
selected because of its more straightforward visual representation. I successfully
added the rectangle to the DrawingPanel.java class and got it to appear when
the mouse entered the frame. The Circle and Triangle classes were subsequently
developed and entered into the DrawingPanel.java file.

However, this initial approach led to a problem. While the shape ob-
jects themselves were instantiated and invoked within DrawingPanel.java the
mouseListener and mouseMotionListener methods were implemented in the
main RunMe.java file. A conflict arose from this separation: references to
the individual forms were initialized in DrawingPanel.java but the animation
logic needed to be in the RunMe.javafile. The decision to eliminate Drawing-
Panel.java from the final solution was finally made due to its redundancy and
the confusion it made for me. Using RunMe.java, the shape objects are now
instantiated and modified directly in their respective files, simplifying the code
and removing any potential conflicts.

4 Motivation for how the code looks

The RunMe.java file starts the program’s execution. This file serves as the entry
point and is in charge of configuring the GUI. It generates a JFrame object and
sets its other properties and dimensions.

RunMe.java then invokes each of the distinct shape classes when the frame
has been created. These classes, which I assume are found in the same package
as RunMe.java, stand for the various shapes that will be shown, which for now
are Rectangle, Circle, and Triangle.

The shapes are then hidden once an internal flag (setShouldDraw) is origi-
nally set to false. Lastly, each form object is added to the JFrame object that
was previously generated, thereby putting them inside the visible portion of the
frame.

The current code structure prioritizes ease of navigation and future extensi-
bility.

• Simplified Navigation & modification: By having all the shape creation
and management logic within RunMe.java, users can easily add new shapes.
This centralized location eliminates the need to search through multiple
files. This is made upon the assumption that the user have their own
proper shape.java class file and that it is located within the same folder/-
package.

3

4.1 Good to know

4.1.1 Note 1

Within the individual shape files (e.g. Rectangle.java) exist a method paintIm-
mediately(...). This code snippet:

public void paintImmediately(int x, int y, int radius) {

super.paintImmediately(x, y, radius, radius);

}

is was added because I had some trouble with getting the respective shape (in
my case the rectangle) to show up at all times when its being moved without
being overshadowed by the frames background color. If you want, you can
comment out the triangle and circle declarations in the RunMe.java code and
then run the code without having the paintImmediately function called under
mouseDragged() and you will see the problem.

For the same reason and to make the drawing more smoother, the line:

JFrame.setDefaultLookAndFeelDecorated(true);

was added to the RunMe.java code.

4.1.2 Note 2

If you look at the Triangle.java code, I added 2 extra arguments to the construc-
tor calling the rectangle and circle shapes. This I did lastly as a DIY solution
to the mouse movement events overwriting each other. What I mean is the
following:

• When the RunMe.java code is run the rectangle is created so its mouseEn-
tered event handler will show the rectangle when the mouse enters the
frame.

• Afterwards the circle is created which will have its own mouseEntered and
other event handlers that will rewrite the ones that the rectangle had.

• So I solved the issue by calling all the previous figures as arguments to
the current figure so that there is a reference for the previous figures to
use inside the appropriate events handlers.

4

5 How to add new figures to the code

• Before you add a figure you need to make sure that you have a file with the
shape that you want to add, the file needs to have methods for extracting
its different coordinates and then it needs to implement the mouse event
methods and modify them if needed.

• Let us say that we want to add a figure named Kvadrat and that we
already have the appropriate file Kvadrat.java with the needed methods.

1. First we need to initialize the shape and create an instance of it:

Kvadra kvadrat = new Kvadrat(10, 10, 100);

2. Secondly, we need to decide whether to show the figure from the start
or not using:

rectangle.setShouldDraw(false);

3. Afterwards, we add the shape to the frame using:

frame.add(rectangle);

• In accordance with note 2 of section 4; subsection 4.1.2, we need to change
the constructor of the Kvadrat shape so that it calls upon all previous
shapes implemented in the RunMe.java file. This will be a huge headache
when having a dozen shapes, so a better solution needs to be found and
implemented as soon as possible!

5

6 Changes made after feedback from the teacher

6.1 Complete remake due to previous misunderstanding

Prior to writing this, I misunderstood a part of the assignment description that
said

”.... Du ska allts̊a inte l̊ata figurerna bli en del av Swing-hierarkin. De klasser
som representerar bilderna ska allts̊a inte ärva av n̊agon klass i

Swing-biblioteket....

and made the figure.java files (circle.java, rectangle.java and triangle.java) in-
herit methods from the swing library.

So for revision nr. 1, I rewrote the figure.java files so that they do not
inherit anything from the swing library and simply draw themselves using the
paintComponent() method. If we look at the circle.java file then I made the class
so that it only takes the x, y and radius parameters (by creating a constructor
that only accepts the wanted parameters):

public Circle (int x0, int y0, int r) {

CenterX = x0;

CenterY = y0;

radius = r; }

Afterwards, I made a method to draw the figure using:

public void draw(Graphics g) {

g.setColor(Color.RED);

g.fillOval(CenterX-radius, CenterY-radius, radius*2, radius*2); }

and 2 methods that moves the circle and checks if the mouse click is withing its
boundaries:

public void move(int x1, int y1) {

CenterX = x1;

CenterY = y1; }

public boolean containsCircle(int x, int y) {

return (CenterX-x)*(CenterX-x)+(CenterY-y)*(CenterY-y) <=

radius*radius; }

The same thing was done for the rectangle and triangle figures with minor
modifications shown in the references section of the report.

6

Regarding where to create the drawing window and where to create the
figures and start listening for clues on if the mouse is clicked or pressed etc.,
I brought back the script DrawingPanel.java and there I created the figures
(Circle + Rectangle + Triangle) and then I created various methods and a
buffer to move and find the shapes to be moved around and animated. For this
I followed the bullet Points on the course webpage that said how:

• Förflyttningar ska vara animerade, dvs användaren ska se hur figuren fly-
ttar p̊a sig när han/hon drar musen.

• När en figur flyttas hamnar den ”överst” s̊a att den täcker andra figurer
som ligger i överlappande position.

• När en figur flyttas gäller att den ”översta” väljs; om flera figurer täcker
muspekarens position väljs den översta.

The following code lstlistings shows how I e.g. created the circle with

private Square square = new Square(60, 60, 40, 40);

, added it to an array with shapes using:

shapes.add(circle);

, and finally wrote methods (shown in References) of how I found the object to
move, removed or moved it etc.

I also wrote a Listener java class responsible for getting the coordinates of
the object when the mouse is pressed or dragged and send it to the respective
method of DrawingPanel.java. I tried to have this code snippet in the same
DrawingPanel code but then I encountered problems where it wanted to have
its own file with a main class belonging to it.

6.2 Main.java

For the main part of the code, meaning the script that needs to be run to start
the program, I just wrote a simple public class that extends a JFrame, sets the
windows visibility and boundaries and then opens it by calling:

public static void main(String[] argv) {

new Main();

}

This way I completed all the requirements of the assignment, no figure is de-
pended or inherits from the swing library and I got a working solution.

7

References

Circle.java

import java.awt.Color;

import java.awt.Graphics;

public class Circle

{

private int CenterX, CenterY;

private int radius;

public Circle(int x0, int y0, int r) {

CenterX = x0;

CenterY = y0;

radius = r; }

public void draw(Graphics g) {

g.setColor(Color.RED);

g.fillOval(CenterX-radius, CenterY-radius, radius*2, radius*2); }

public void move(int x1, int y1) {

CenterX = x1;

CenterY = y1; }

// Checks if the mouse click is within the circle

public boolean containsCircle(int x, int y) {

return (CenterX-x)*(CenterX-x)+(CenterY-y)*(CenterY-y) <=

radius*radius; }

}

8

Rectangle.java

import java.awt.Color;

import java.awt.Graphics;

public class Square

{

private int x, y;

private int width, height;

public Square(int x0, int y0, int w, int h) {

x = x0;

y = y0;

width = w;

height = h; }

public void draw(Graphics g) {

g.setColor(Color.GREEN);

g.fillRect(x, y, width, height); }

public void move(int x1, int y1) {

x = x1;

y = y1; }

// Checks if the mouse click is within the square

public boolean containsSquare(int x1, int y1) {

return x <= x1 && y <= y1 && x1 <= x + width && y1 <= y +

height; }

}

9

Triangle.java

import java.awt.Color;

import java.awt.Graphics;

public class Triangle

{

private int[] points_X;

private int[] points_Y;

private int TopX; // TopX is the X-component located at the top of

the triangle

private int TopY; // TopY is the Y-component located at the top of

the triangle

private int width, height;

public Triangle(int x, int y, int w, int h) {

TopX = x;

TopY = y;

width = w;

height = h;

points_X = new int[]{TopX, TopX + width/2, TopX - width/2}; //

Array of x-coordinates

points_Y = new int[]{TopY, TopY + height, TopY + height}; //

Array of y-coordinates

}

public void draw(Graphics g) {

g.setColor(Color.BLUE);

g.fillPolygon(points_X, points_Y, 3); }

public void move(int x1, int y1) {

TopX = x1;

TopY = y1;

this.points_X[0] = x1; // Index 0 is the x-coordinate of

the top of the triangle

this.points_Y[0] = y1;

// Formulas for the x and y coordinates of the right and left

corners of the triangle

this.points_X[1] = x1 + width/2; // Index 1 is the x-coordinate

of the right corner of the triangle

this.points_Y[1] = y1 + height;

10

// Formulas for the x and y coordinates of the right and left

corners of the triangle

this.points_X[2] = x1 - width/2; // Index 2 is the x-coordinate

of the left corner of the triangle

this.points_Y[2] = y1 + height;

}

// Checks if the mouse click is within the triangle

public boolean containsTriangle(int x, int y) {

int dx = x - TopX;

int dy = y - TopY;

return -dy <= 2*dx && 2*dx <= dy && dy <= height;

}

}

11

DrawingPanel.java

import java.awt.*;

import javax.swing.*;

import java.util.*;

public class DrawingPanel extends JPanel

{

private ArrayList <Object> shapes = new ArrayList<Object>();

private Circle circle = new Circle(100, 100, 40); // Create a circle

object

private Rectangle rectangle = new Rectangle(60, 60, 40, 40); //

Create a square object

private Triangle triangle = new Triangle(30, 30, 60, 60); // Create

a triangle object

public DrawingPanel() {

setBackground(Color.WHITE);

Listener mouListener = new Listener(this);

addMouseListener(mouListener); // Add a mouse listener to the

panel meaning that the panel listens to mouse events

addMouseMotionListener(mouListener); // Add a mouse motion

listener to the panel meaning that the panel listens to

mouse motion events

// Add the objects to the list using geoShapes.add(geoObject);

shapes.add(circle);

shapes.add(rectangle);

shapes.add(triangle);

}

public void addGeoObject(Object o) {

// This method adds a geometric object to the list of geometric

objects

shapes.add(o);

Graphics g = getGraphics();

// Check if the object is a circle, square or triangle

if(o instanceof Rectangle) {

// Cast the object to a square object

Rectangle rectangle = (Rectangle)o;

rectangle.draw(g); }

else if(o instanceof Circle) {

// Cast the object to a circle object

Circle circle = (Circle)o;

circle.draw(g); }

else if(o instanceof Triangle) {

// Cast the object to a triangle object

Triangle triangle = (Triangle)o;

triangle.draw(g); }}

12

// This method finds the object that was clicked on or pressed using

the mouse (mouseClicked or mousePressed)

// It also takes into account that there may be multiple overlapping

objects, for that I have created a buffer

// to function as a temporary list that stores all objects that meet

the criteria.

// At the final stage the method returns the last object from the

buffer thus making sure that the object that

// was drawn last is the one that is returned. This is done using

the findGeoObject method!

public Object findGeoObject(int x, int y) {

ArrayList<Object> buffer = new ArrayList<Object>(); // Buffer to

save objects that meet the criteria

for (Object obj : shapes) {

if(obj instanceof Rectangle) {

// If square object meets the criteria, add it to the

buffer

Rectangle rectangle = (Rectangle)obj;

if (rectangle.containsSquare(x,y))

buffer.add(rectangle); }

else if(obj instanceof Circle) {

// If circle object meets the criteria, add it to the

buffer

Circle circle = (Circle)obj;

if (circle.containsCircle(x,y))

buffer.add(circle); }

else if(obj instanceof Triangle) {

// If triangle object meets the criteria, add it to the

buffer

Triangle triangle = (Triangle)obj;

if (triangle.containsTriangle(x,y))

buffer.add(triangle); }

}

// If the buffer is empty, return null

if(buffer.isEmpty()) {

return null; }

else {

// Return the last object from the buffer

Object lastObject = buffer.remove(buffer.size()-1);

return lastObject; }

}

13

// This method removes the object from the list of geometric objects

// thus making it disappear from the panel and ensuring that it is

no longer drawn

public boolean removeGeoObject(Object o) {

boolean flag = shapes.remove(o);

repaint();

return flag; }

// This method moves the object that is being dragged by the mouse

// by listening to the mouseDragged event in real time. The method

uses paintComponent

// to loop through the list of objects and draw the object’s paint

layer last.

// This ensures that the object is drawn last in the list making it

the topmost object and making

// it seems as if its moving. This method is called frequently as

the object’s position is updated

// constantly during the move.

public void moveGeoObject(Object o, int x, int y) {

if(o instanceof Rectangle) {

// IF square object is moved by the mouse, swap the object to

the last position in the list

// before moving it. This ensures that the object is drawn

last in the list making it the topmost object

// and making it seems as if its moving.

Rectangle rectangle = (Rectangle)o;

swapObjectToLast(rectangle);

rectangle.move(x, y);

repaint(); }

else if(o instanceof Circle) {

// IF circle object is moved by the mouse, swap the object to

the last position in the list

// before moving it. This ensures that the object is drawn

last in the list making it the topmost object

// and making it seems as if its moving.

Circle circle = (Circle)o;

swapObjectToLast(circle);

circle.move(x, y);

repaint(); }

else if(o instanceof Triangle) {

// IF triangle object is moved by the mouse, swap the object

to the last position in the list

// before moving it. This ensures that the object is drawn

last in the list making it the topmost object

// and making it seems as if its moving.

Triangle triangle = (Triangle)o;

swapObjectToLast(triangle);

triangle.move(x, y);

repaint();

}}

14

// This method places the current object that is to be drawn with

the mouse last in the list before it is drawn.

public void swapObjectToLast(Object obj) {

// Find the index of the object in the list

// and add it to the last position in the list

// before it is drawn. This ensures that the object

// is drawn last in the list making it the topmost object

// and making it seems as if its moving. End the operation by

removing the object from its original position.

int indexOfObj = shapes.indexOf(obj);

shapes.add(obj);

shapes.remove(indexOfObj);

}

// This method is called by the paintComponent method to draw the

objects on the panel

public void paintComponent (Graphics g) {

super.paintComponent(g);

for (Object o : shapes) {

if(o instanceof Rectangle) {

// If the object is square then draw it

Rectangle rectangle = (Rectangle)o;

rectangle.draw(g); }

else if(o instanceof Circle) {

// If the object is circle then draw it

Circle circle = (Circle)o;

circle.draw(g); }

else if(o instanceof Triangle) {

// If the object is triangle then draw it

Triangle triangle = (Triangle)o;

triangle.draw(g); }

}

}

}

15

Listener.java

import java.awt.event.*;

public class Listener extends MouseAdapter implements

MouseMotionListener {

private DrawingPanel drawPanel; // Responsible for drawing the

geometric objects

private Object chosenObject; // Object chosen by the user to be moved

by pressing on it

public Listener(DrawingPanel d) {drawPanel = d; }

public void mousePressed(MouseEvent e) {

int x = e.getX();

int y = e.getY();

chosenObject = drawPanel.findGeoObject(x, y); }

public void mouseDragged(MouseEvent e) {

int x = e.getX();

int y = e.getY();

// Checks if the object is not null meaning that the object is

chosen

if (chosenObject != null) {

drawPanel.moveGeoObject(chosenObject, x, y);}

}

}

16

Main.java

import javax.swing.JFrame;

public class Main extends JFrame {

DrawingPanel drawPanel = new DrawingPanel();

public Main() {

add(drawPanel);

setBounds(100, 100, 400, 400);

setVisible(true);

setDefaultCloseOperation(EXIT_ON_CLOSE); }

// This is the main method that starts the program

// by calling the JMain constructor

public static void main(String[] argv) {new Main();}

}

17

